Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds: Application to Climate Models
نویسندگان
چکیده
The effects of cirrus clouds on the radiation budget of the earth and the atmosphere, and hence their impact on weather and climate processes, have been articulated by Liou (1986, 1992). Cirrus clouds are frequently finite and highly inhomogeneous based on satellite and replicator sounding observations (Ou et al. 1995; Heymsfield and Miloshevich 1993). Potential effects of the cloud geometry and inhomogeneity on the transfer of radiation must be carefully studied to understand their impact on the radiative properties of the atmosphere as well as to perform proper interpretations of radiometric measurements from the ground, the air, and space. Most of the approaches to three-dimensional (3D) radiative transfer employ the Monte Carlo method. For application to cirrus clouds, Liou and Rao (1996) have used the successive orders of scattering (SOS) approach, which can be directly applied to specific geometry and inhomogeneous structure of a medium. Ou and Liou (1982) presented a spherical harmonic method in multiple dimensions, based on which the diffusion approximation for 3D radiative transfer can be developed (Liou 1992). However, the requirement of computer resources remains the primary obstacle in the modeling of 3D radiative transfer. In conjunction with our objective of understanding the effects of 3D inhomogeneous cirrus on radiative flux and heating rate profiles in the atmosphere and of providing a physical basis for parameterization in climate models, we have developed a 3D inhomogeneous radiative transfer model based on a modified diffusion approximation employing Cartesian coordinates.
منابع مشابه
A New Parameterization of an Asymmetry Factor of Cirrus Clouds for Climate Models
The aspect ratio (AR) of a nonspherical ice particle is identified as the key microphysical parameter to determine its asymmetry factor for solar radiation. The mean effective AR is defined for cirrus clouds containing various nonspherical ice particles. A new parameterization of the asymmetry factor of cirrus clouds in terms of AR and mean effective size, Dge, is developed for solar radiation....
متن کاملAn efficient diffusion approximation for 3D radiative transfer parameterization: application to cloudy atmospheres
The three-dimensional (3D) diffusion radiative transfer equation, which utilizes a four-term spherical harmonics expansion for the scattering phase function and intensity, has been efficiently solved by using the full multigrid numerical method. This approach can simulate the transfer of solar and thermal infrared radiation in inhomogeneous cloudy conditions with different boundary conditions a...
متن کاملAn Intercomparison of Microphysical Retrieval Algorithms for Upper- Tropospheric Ice Clouds
U pper-tropospheric ice clouds are important modulators of the Earth’s climate, cover 20% of the globe at any given time (Liou 1986), and occur ~43% of the time in long-term satellite datasets (Wylie and Menzel 1999). Ice clouds, such as cirrus, tend to ref lect less incoming solar radiation and absorb more infrared radiation than water clouds, which are typically optically thicker and occur at...
متن کاملCirrus cloud horizontal and vertical inhomogeneity effects in a GCM
A set of the inhomogeneity factor for high-level clouds derived from the ISCCP D1 dataset averaged over a five-year period has been incorporated in the UCLA atmospheric GCM to investigate the effect of cirrus cloud inhomogeneity on climate simulation. The inclusion of this inhomogeneous factor improves the global mean planetary albedo by about 4% simulated from the model. It also produces chang...
متن کاملAn Investigation of Cirrus Cloud Properties Using Airborne Lidar
Title of dissertation: AN INVESTIGATION OF CIRRUS CLOUD PROPERTIES USING AIRBORNE LIDAR John Edward Yorks, Doctor of Philosophy, 2014 Dissertation directed by: Russell R. Dickerson Department of Atmospheric and Oceanic Science The impact of cirrus clouds on the Earth’s radiation budget remains a key uncertainty in assessing global radiative balance and climate change. Composed of ice, and locat...
متن کامل